295 research outputs found

    Differential Rotation in Convective Envelopes: Constraints from Eclipsing Binaries

    Get PDF
    Over time, tides synchronize the rotation periods of stars in a binary system to the orbital period. However, if the star exhibits differential rotation then only a portion of it can rotate at the orbital period, so the rotation period at the surface may not match the orbital period. The difference between the rotation and orbital periods can therefore be used to infer the extent of the differential rotation. We use a simple parameterization of differential rotation in stars with convective envelopes in circular orbits to predict the difference between the surface rotation period and the orbital period. Comparing this parameterization to observed eclipsing binary systems, we find that in the surface convection zones of stars in short-period binaries there is very little radial differential rotation, with ∣r∂rln⁥Ω∣<0.02|r\partial_r \ln \Omega| < 0.02. This holds even for longer orbital periods, though it is harder to say which systems are synchronized at long periods, and larger differential rotation is degenerate with asynchronous rotation.Comment: 19 pages, published in MNRAS. Corrected typos and cases where solar/anti-solar were swappe

    Differential Rotation in Convective Envelopes: Constraints from Eclipsing Binaries

    Get PDF
    Over time, tides synchronize the rotation periods of stars in a binary system to the orbital period. However, if the star exhibits differential rotation, then only a portion of it can rotate at the orbital period, so the rotation period at the surface may not match the orbital period. The difference between the rotation and orbital periods can therefore be used to infer the extent of the differential rotation. We use a simple parametrization of differential rotation in stars with convective envelopes in circular orbits to predict the difference between the surface rotation period and the orbital period. Comparing this parametrization to observed eclipsing binary systems, we find that in the surface convection zones of stars in short-period binaries there is very little radial differential rotation, with |r∂_rln Ω| < 0.02. This holds even for longer orbital periods, though it is harder to say which systems are synchronized at long periods, and larger differential rotation is degenerate with asynchronous rotation

    Rapid Rotation of Low-Mass Red Giants Using APOKASC: A Measure of Interaction Rates on the Post-main-sequence

    Get PDF
    We investigate the occurrence rate of rapidly rotating (vsin⁡iv\sin i>>10 km s−1^{-1}), low-mass giant stars in the APOGEE-Kepler (APOKASC) fields with asteroseismic mass and surface gravity measurements. Such stars are likely merger products and their frequency places interesting constraints on stellar population models. We also identify anomalous rotators, i.e. stars with 5 km s−1^{-1}<<vsin⁡iv\sin i<<10 km s−1^{-1} that are rotating significantly faster than both angular momentum evolution predictions and the measured rates of similar stars. Our data set contains fewer rapid rotators than one would expect given measurements of the Galactic field star population, which likely indicates that asteroseismic detections are less common in rapidly rotating red giants. The number of low-mass moderate (5-10 km s−1^{-1}) rotators in our sample gives a lower limit of 7% for the rate at which low-mass stars interact on the upper red giant branch because single stars in this mass range are expected to rotate slowly. Finally, we classify the likely origin of the rapid or anomalous rotation where possible. KIC 10293335 is identified as a merger product and KIC 6501237 is a possible binary system of two oscillating red giants.Comment: 39 pages, 8 figures, 4 tables. Accepted for publication in the Astrophysical Journal. For a brief video discussing key results from this paper see http://youtu.be/ym_0nV7_YqI . The full table 1 is available at http://www.astronomy.ohio-state.edu/~tayar/tab1_full.tx

    Cannibals in the thick disk II -- Radial-velocity monitoring of the young alpha-rich stars

    Full text link
    We report the results from new observations from a long-term radial velocity monitoring campaign complemented with high resolution spectroscopy, as well as new astrometry and seismology of a sample of 41 red giants from the third version of APOKASC, which includes young alpha rich (YAR) stars. The aim is to better characterize the YAR stars in terms of binarity fraction, mass, abundance trends and kinematic properties. The radial velocities of HERMES, APOGEE and Gaia were combined to determine the binary fraction among YAR stars. In combination with their mass estimate, their evolutionary status, chemical composition and kinematic properties, it allows to better constrain the nature of these objects. We find that the frequency of binaries among over-massive stars is not significantly different than that of the other stars in our sample, but that the most massive YAR stars are indeed single, which has been predicted by population synthesis models. Studying their [C/N], [C/Fe] and [N/Fe] trends with mass, many over-massive stars do not follow the APOKASC stars, favouring the scenario that most of them are product of mass transfer. Our sample further includes two under-massive stars, with sufficiently low masses so that these stars could not have reached the red giant phase without significant mass loss. Both over-massive and under-massive stars might show some anomalous APOGEE abundances such as N, Na, P, K and Cr, although higher resolution optical spectroscopy might be needed to confirm these findings. Considering the significant fraction of stars that are formed in pairs and the variety of ways that make mass transfer possible, the diversity in properties in terms of binarity and chemistry of the over-massive and under-massive stars studied here implies that it is not safe to directly relate the mass of the YAR stars with age and that most of these objects are likely not young.Comment: Submitted to A&A, comments welcome

    Response to Comment on "A Non-Interacting Low-Mass Black Hole -- Giant Star Binary System"

    Full text link
    van den Heuvel & Tauris argue that if the red giant star in the system 2MASS J05215658+4359220 has a mass of 1 solar mass (M⊙_\odot), then its unseen companion could be a binary composed of two 0.9 M⊙_\odot stars, making a triple system. We contend that the existing data are most consistent with a giant of mass 3.2−1.0+1.03.2^{+1.0}_{-1.0} M⊙_\odot, implying a black hole companion of 3.3−0.7+2.83.3^{+2.8}_{-0.7} M⊙_\odot.Comment: 5 page

    Kepler red-clump stars in the field and in open clusters: Constraints on core mixing

    Get PDF
    Convective mixing in helium-core-burning (HeCB) stars is one of the outstanding issues in stellar modelling. The precise asteroseismic measurements of gravity-mode period spacing (&dela;σ1) have opened the door to detailed studies of the near-core structure of such stars, which had not been possible before. Here, we provide stringent tests of various core-mixing scenarios against the largely unbiased population of red-clump stars belonging to the old-open clusters monitored by Kepler, and by coupling the updated precise inference on &dela;σ1 in thousands of field stars with spectroscopic constraints. We find that models with moderate overshooting successfully reproduce the range observed of &dela;σ1 in clusters. In particular, we show that there is no evidence for the need to extend the size of the adiabatically stratified core, at least at the beginning of the HeCB phase. This conclusion is based primarily on ensemble studies of &dela;σ1 as a function of mass and metallicity. While &dela;σ1 shows no appreciable dependence on the mass, we have found a clear dependence of &dela;σ1 on metallicity, which is also supported by predictions from models

    Target Selection for the SDSS-IV APOGEE-2 Survey

    Full text link
    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing roughly 300,000 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding upon APOGEE's goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.Comment: 19 pages, 6 figures. Accepted to A

    Poster CS20.5 - Weakened magnetic braking supported by asteroseismic rotation

    Get PDF
    Studies using asteroseismic ages and rotation rates from star-spot rotation have indicated that standard age-rotation relations may break down roughly half-way through the main sequence lifetime, a phenomenon referred to as weakened magnetic braking. While rotation rates from spots can be difficult to determine for older, less active stars, rotational splitting of asteroseismic oscillation frequencies can provide rotation rates for both active and quiescent stars, and so can confirm whether this effect really takes place on the main sequence. In this talk, I’ll show how we obtained asteroseismic rotation rates of 91 main sequence stars showing high signal-to-noise modes of oscillation. Using these new rotation rates, along with effective temperatures, metallicities and seismic masses and ages, we built a hierarchical Bayesian mixture model that showed that our new ensemble more closely agreed with weakened magnetic braking, over a standard rotational evolution scenario

    Establishing the accuracy of asteroseismic mass and radius estimates of giant stars III. KIC4054905, an eclipsing binary with two 10 Gyr thick disk RGB stars

    Get PDF
    Eclipsing binary stars with an oscillating giant component allow accurate stellar parameters to be derived and asteroseismic methods to be tested and calibrated. To this aim, suitable systems need to be firstly identified and secondly measured precisely and accurately. KIC 4054905 is one such system, which has been identified, but with measurements of a relatively low precision and with some confusion regarding its parameters and evolutionary state. Our aim is to provide a detailed and precise characterisation of the system and to test asteroseismic scaling relations. Dynamical and asteroseismic parameters of KIC4054905 were determined from Kepler photometry and multi-epoch high-resolution spectra from FIES at the Nordic Optical Telescope. KIC 4054905 was found to belong to the thick disk and consist of two lower red giant branch (RGB) components with nearly identical masses of 0.95M⊙M_{\odot} and an age of 9.9±0.69.9\pm0.6 Gyr. The most evolved star displays solar-like oscillations, which suggest that the star belongs to the RGB, supported also by the radius, which is significantly smaller than the red clump phase for this mass and metallicity. Masses and radii from corrected asteroseismic scaling relations can be brought into full agreement with the dynamical values if the RGB phase is assumed, but a best scaling method could not be identified. We measured dynamical masses and radii with a precision better than 1.0%. We firmly establish the evolutionary nature of the system to be that of two early RGB stars with an age close to 10 Gyr, unlike previous findings. The metallicity and Galactic velocity suggest that the system belongs to the thick disk of the Milky Way. We investigate the agreement between dynamical and asteroseismic parameters for KIC 4054905. Consistent solutions exist, but the need to analyse more systems continues in order to establish the accuracy of asteroseismic methods.Comment: Accepted for publication in Astronomy & Astrophysics, 11 pages, 3 figure
    • 

    corecore